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Does Accelerator-Based Particle Physics

Have a Future?

 Wecan't just leave the design of frontier accelerators to the
gpecialists. Inventing clever new ideas requires the same
talents that it takes to do experimental physics.

Maury Tigner
Physics Today — January 2001

Assuming thisto be basically correct ...

How can we make it work?
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Chris Quigg — Snowmass 2001 closing plenary:

> Thanks to the work of many people, the moment is upon us to probe,
shape, and judge the idea of a linear collider as a possible next big
step for particle physics.

Evaluating a linear collider and working to define a scientifically rich,
technically sound, fiscally responsible plan is a homework problem for

the entire community.

Everyone must come to an informed judgment.

At Snowmass 2001, a widespread feeling has emerged that the world
community should move urgently to construct a TeV-scale linear
collider as an international project.

These are ambitious machines and significant challenges remain:

we must be certain of the osts and we must take the measure of
technical risks. A phase change is needed to complete the design and
development promptly.




In the United States, another phase change is needed soon in the
commitment of experimental physicists to the linear collider program.

A few people have done valuable work, but outside the US, many
more people have done much more comprehensive work.

US participation in a linear collider will not be decisive without the
engagement of a large and energetic cadre of superb experimenters to
hone the physics case, participate in parameter choices, and work
side-by-side with the machine builders. If you wait, it will not happen!

It is also time for closer cooperation among physicists in different
regions on linear collider issues: to coordinate R&D, to develop a
unified physics document, and to make the scientific case to the
governments of the world—perhaps an International Linear Collider
Users Group?

(mine) (ChrIS QUlgg)
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== L C time scale

« CDR~2004
o Start constructing components ~ 2005

e RD godl isto
— reduce cost,
— maximize use of clever ideas,
— demonstrate feasibility,
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o Thistalk:

e Only suggests the nature of collaborative efforts (phase
change?)
— Not a set of requisitions carved up in detall
* Doesnot detail ‘plug and play’ activities
e |Isnot a‘status update
— Does not detail who isup to what
 |llustrates technologies and hints at opportunities

e ISNLC/TESLA/CLIC neutral

o SLC Experience:

e Substantial contributions from collaborators
— especialy software
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e L|m|t|ng LC technology.

 (not including physics of beams)

o gradient & RF power & associated diagnostics
e Low power nwave circuitry

e Lasers

« Positioning/alignment/vibration stabilization
« mmwave & FIR diagnostics

o Dataflow — control system

« Radiation effects

 Vacuum

* Feedback

» Engineering — fabrication, packaging, testing
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— Sources Damping Rings, | nter action
region

(Broader) range of issues than linac
— Materias science
 photocathode
e positron system
e radiation effects
— Surface science
¢ Secondary emission
« UUHV (1e-12 Torr) — (e.g. Polarized e- RF gun)
— Synchrotron radiation
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R&D Challenges

Precision microwave

IR final doublet girder (~ internal to detector)

Beam size from optical transition/diffraction radiation
Bunch length

Storage ring instabilities — electron cloud

— surface physics

Radiation modeling

Permanent Magnets

RF breakdown

Control system

Accelerator Instrumentation, Controls & Diagnostics
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S “Precision” microwave

« High power controls and monitoring + position monitors +
beam phase monitors

— Cavity tuning at TESLA; lorentz force compensation + coupling
control

e programmed phase control

o external measurements of phase and amplitude

— TESLA Test Facility uses a sequence of stabilization loops and
associated processors

— NLC/SLC usesthermal stabilized power and phase measurements
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Linac LLRF Drive
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NLC Linac LLRF

M easur ement Requirements

Parameter Value Details
Bandwidth > 100 MHz at-3dB

Rise time < 5ns 10% to 90%
Phase resolution 1 degree At 11.424 GHz
Dynamic Range > 20 dB

Amplitude Resolution

1073 of full scale

Beam phase wrt RF 1 degree At 11.424 GHz
Beam signal / RF -40 dB ("

Reflected power detector max input <100 mw Peak
Reflected power detector rise time <10 ns
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— Flnal Doublet support glrder

e |nternal to detector

e Compact Superconducting Quads are the superior
technology because of their flexibilty and are the most
likely candidate for the final doublet

o R&D in SC Quadsis still in the conceptual state
o SLAC team working with PM
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Development of atransition
radiation profile monitor -OTR

some controversy over minimum
resolvable beam image

— achieved 7nm (12/00) well beyond
purported limit — OTR provides light at
very large angles = high resolution

— not like synchrotron light
— smallest OTR spot imaged to date

theoretical limit: ~ |

Parameters for ATF OTR (built at SLAC
— resolution —2mMm
— field of view — 300 x 200 nm (or ~2x)

— depth of field — 8 mm vertica
displacement

— OK light for normal camera— 5e9 ppb

SLAC—built very high resolution OTR

— Industrial microscope objective
— 35 mm working distance
— various target materials



OTR images & target damage
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e Bunch Iength

o Streak cameras
— resolution limited to ~ 1Imm
— gpace charge, calibration
e Coherent radiation
— stronger signal with shorter beams
— asymmetry difficult (use power spectrum — phase info |ost)
» Deflecting RF structures
— promising =
* Broadband microwave emission
— cheap, relative—agiven

e accurate monitor critical for short wave FEL
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Bunch length monitor -

Transverse RF Cavity for Bunch Length and Slice-Emittance M easurements
(J. Frisch, X.-J. Wang, old SLAC '60s)
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Storage ring instabilities— electron cloud

A diffuse cloud of electrons gathers quickly and surrounds the
positron (proton) beam.
Electrons generated by photoel ectric/secondary emission

Very serious impact on b-factory / damping ring design and
operation

S
Sep

20ns 5ns 20ns 5ns

Schematic of electron-cloud build up in the LHC beam pipe.



Electron cloud effect in KEK-B LER

Showing the risetime
of cloud density

Bunch spacing ~ 5 ns
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— Radiation modeling
e - prompt residual |
 pt ~ prompt - residual

e Collider single beam power ~14 MW
— (1 Rad/hr ~ 0.3 mW into 1 kg of material)

* Needto modd:
— locally installed electronics/plastics radiation dose
* how much local shielding is needed?
o Optics/Lasers/Electronics/HV power supplies/nwave components/?
— material damage from extreme radiation
— background processes for a variety of detectors
e (not limited to IR)
— machine component ‘ damage’ processes
— environmental — (NUMI)
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. Niche 3 — Displacement damage by neutrons (1MeV n, cm™®)
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FFTB Single Pulse Damage Coupon Tedt - front and back side - same scale
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RF Breakdown Diagnostics

Goals:
— Location within mm
— Quantify energy deposition
» Comprehensive recording
— Observe emitted light

Provide feedback to manufacturing & fabrication process
Optimize conditioning protocol

Observations:
— Multi-breakdown events caused by reflection
— Breakdown grouping in time
— Structure damage is not explained by material removed by arc pits
themselves

— Many (most) structures show enhanced concentration of breakdown in WG
coupler

_ Accelerator Instrumentation, Controls & Diagnostics
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e X- band (NLCTA) acoustic emission

o Clearly audible sound from breakdown — heard from n-1
generation transport components (e.g. flower petal mode
converter, bends)

e Small, IMHz bandwidth industrial or homemade sensors

e 10 MHz bandwidth recorders (3 samples/mm)
— Look for start time (TTF) of ‘ballistic phonons
— or Amplitude (NLCTA)

* Broadband mechanical impulse

— (2001- limited by sensor performance)
— Typ. | ~7mm

_ Accelerator Instrumentation, Controls & Diagnostics
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Acoustic sensor studies of input| coupler
breakdown
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Structureinput coupler - exactly where are breakdown events?

”

Cutaway perspective view of VG3RA
Input coupler
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Waterfall Plot of One Event
Shows saturation (seen after 1/29/02)
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o — Control system —

* Record (and keep) data from every pulse
— (120 Hz NLC/3MHz @ 0.5% duty cycle TESLA)
— waveforms, feedback, feedforward

e Real —time pulse to pulse control
— Guaranteed latency
— ‘Machine Protection’
— Feedforward from rings

» Feedback

— Measure and correct
» Sensors and correctors may be miles apart

_ Accelerator Instrumentation, Controls & Diagnostics
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Machine Protection System
(control system example)

Single pulse response
— Sensors on each ‘pulsed’ device
— Prohibit extraction from the ring in case of anomaly
— A huge set of dry contacts is not an appropriate solution

Software
— Need afresh idea

Accelerator Instrumentation, Controls & Diagnostics
- Marc Ross—SLAC
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_— Global Accelerator Network “ GAN”-\

* Proposal to ICFA from Wagner 3/00
— Task force (Astbury/Willeke) report 12/01

* Primary purpose to develop global collaboration for LC
construction and operation
— (Snowmass 2001 evening plenary)

« Many questions: Will GAN provide -
1. non-host labs with justification for personnel costs?
2. non-host labs with venue for R D?
3. host lab with staff?
4. continuation of involvement following construction

Who benefits from GAN?

_ Accelerator Instrumentation, Controls & Diagnostics
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e GAN DOESNOT PROVIDE JUSTIFICATION FOR
NON-HOST LAB STAFFING
— there must also be projects...
e The purpose of GAN isto maintain involvement/demand
ongoing responsibility of those who built.

— NOT like HERA, PEP2, SNS, LHC....
— Construction proceeds through strong collaboration

 Why do you care?
— How do you see the evolution of your involvement in the LC?

_ Accelerator Instrumentation, Controls & Diagnostics
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Example university involvement in NLC RD

* Feedback on nanosecond time scales (Oxford U — Burrows)

— Two students posted at SLAC
— Engineer and one student at Oxford

o Studentsoperate NLCTA & arefully ‘trained’

e |f amedieva institution like Oxford U can contributeto LC
RD then so can you!
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Concrete ideas about how to connect
Immediately (George)

Developed akind of list —see Tom Himel

Electronics engineering
Calibration, ‘high performance’ mixers
Very similar to precision detector dag.
Precision microwave
Mechanical engineering
Magnetics, acoustics
IR final doublet girder (~ internal to detector) ~similarto VXD supports

Beam size from optical transition/diffraction radiation
Precision optics
Electrodynamics of OTR

FIR / mm wave optics, )
VUV/Xray optics

Bunch length  imaging and calorimetry
Basic EM
Materials science, surface

Storage ring instabilities — electron cloud  science, electron
detectors/energy analyzer



Modeling, including known
radiation effects
Similar to LHC design work

Radiation modeling

Mechanical engineering
Permanent Magnets  Field measurements, field
stability

| nstrumentation, microwave,
RF breakdown acoustic, materials/surface

science

Control system

L arge scale software
engineering, ~ similar to
detector systems
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